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Abstract
Pattern matching allows programs both to extract specific
information from complex data types, as well as to branch
on the structure of data and thus apply specialized actions
to different forms of data. Originally designed for strongly
typed functional languages with algebraic data types, pattern
matching has since been adapted for object-oriented and
even dynamic languages. This paper discusses how pattern
matching can be included in the dynamically typed language
Python in line with existing features that support extracting
values from sequential data structures.

CCS Concepts: • Software and its engineering → Pat-
terns.
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1 Introduction
With the increasing size and complexity of data, it becomes
ever more important to discover structures in data and ex-
tract relevant information. Various computing tools have
evolved to address this. Parsers, for instance, are highly effi-
cient in discovering structure in textual data and turn linear
streams of characters into trees of specialized symbols.
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The programming language community has long risen to
the challenges of increased data complexity through the de-
sign of abstract data structures such as algebraic data types
or objects and classes to not only capture the structure of
data but also make the underlying information accessible
and available for manipulation. In addition to these data
structures, however, a programming language must also pro-
vide the means to process the data. One such tool is pattern
matching, supporting two objectives: decomposing complex
objects into meaningful parts for further processing, and
branching on the overall structure of a data object rather
than on specific values.

Patternmatching has first emerged in functional languages
with strict static typing. With the advent of object-oriented
programming, pattern matching has increasingly also found
its way into object-oriented languages. The major hurdle
to overcome was the discrepancy between the concepts of
encapsulation and abstraction in OOP as opposed to having
full access to all data for discovering structure and extracting
partial information in pattern matching.
In recent years, data processing and analysis has shifted

towards the use of dynamic languages, combining the power
of highly optimized libraries with the ease of a simple and
accessible language. Python, in particular, has become a de-
facto standard for many big data and machine learning tasks.
Despite Python’s range of data structure and processing fa-
cilities, however, it only provides limited means of pattern
matching, namely for extracting elements from sequential
data. This paper thus reports on a project to extend Python’s
pattern matching capabilities through the introduction of a

Program 1 Two examples where pattern matching is used
to define functions for the factorial and the sum, respectively.
def fact(arg):

match arg:

case 0 | 1:

f = 1

case n:

f = n*fact(n-1)

return f

def sum(seq):

match seq:

case []:

s = 0

case [hd, *tl]:

s = hd+sum(tl)

return s
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Program 2 An example of Python’s match-statement in
action, as it branches on the type and structure of the subject
node and binds local variables to nodes in the tree-structure.
def simplify(node):

match node:

case BinOp(Num(left), '+', Num(right)):

return Num(left + right)

case BinOp(left, '+' | '-', Num(0)):

return simplify(left)

case UnaryOp('-', UnaryOp('-', item)):

return simplify(item)

case _:

return node

fully fledged structure for conditional branching and extrac-
tion of information, based on the structure of objects.
Python organizes data primarily in form of a directed la-

beled graph where all data values are represented by objects
that act as vertices in the graph. Apart from an identity and
attributes that refer to other objects, an object has no actual
structure. Pattern matching in Python is thus primarily a
task of matching a sub-graph. This differs from both the
traditional approach within the setting of strongly and stat-
ically typed functional languages, as well as the concept
of data abstraction and encapsulation of typical object ori-
ented languages, and brings about some unique challenges.
The class of an object, for instance, provides only limited
information about the object’s structure and its relationship
to other objects. We address this issue by extending classic
constructor patterns with the means to further specify the
required structure.
The focus of this paper is on the syntax and semantics

of pattern matching as an enhancement to the Python lan-
guage. This differs from existing work on pattern matching
in Python [13, 14] that approached the subject from an al-
gorithmic and mathematical point of view. In contrast to
pattern matching in other dynamic languages [3, 11], we
implement it as a compiled feature of the language in the
tradition of static languages [6, 22] rather than introducing
patterns as first-class objects.
The primary contribution of this paper is a discussion of

pattern matching in the context of the dynamically typed
language Python. It summarizes theoretical considerations
behind the design of the language enhancement. Ideally,
patterns could be modeled as natural extensions of existing
language features such as assignments or type annotations.
However, we will argue that this is not entirely feasible in
Python. A working proof of concept with support for pattern
matching in Python is available and the core elements of our
design have been proposed for integration into Python [4],
although issues of the implementation are beyond the scope
of this paper.

2 Overview
Python offers sophisticated features to deal with sequential
data, including iterable unpacking, which extracts individual
values from a sequence and binds them to variables. How-
ever, not all data is best described sequentially: sometimes
the graph structure imposed by objects is a better fit. More-
over, due to Python’s dynamic nature, the data provided to a
specific part of the code might take on many different shapes
and forms.

Two questions naturally arise out of this situation:
1. Can we extend a feature like iterable unpacking to

work for more general object and data layouts?
2. How dowe support selecting a specific data processing

strategy based on the structure of the data provided?
Both questions can be answered by pattern matching, which
we understand as providing a structural template (the pat-
tern) and an associated action to be taken if the data fits the
template. The template typically contains variables that act
as formal parameters for the associated action.
While pattern matching has found its way into various

object-oriented and even dynamic languages [3, 6, 7, 11, 22],
our aim is to find a design that works particularly well with
Python’s existing syntax and semantics. This means, e.g., that
the syntax of patterns should represent a natural extension
to iterable unpacking or formal parameters.
We found that only parts of iterable unpacking syntax

can be directly generalized to patterns. In particular, side
effects should be avoided due to the conditional nature of
patterns. Pattern matching can thus only operate on actual
sequences rather than iterables, and the assignment targets
are restricted to local variables, excluding attributes or item
assignments. Although Python is a dynamic language, we
strive for patterns to express static structures and use guards
to express additional dynamic constraints where necessary.

Programs 1 and 2 provide a first impression of the overall
syntax and structure of pattern matching in Python. The
match keyword is followed by an expression that yields the
subject to be matched against the individual patterns, to-
gether with a series of case clauses. Combining various pat-
terns in sequences, alternatives, or through nesting allows
them to express arbitrarily complex tree structures.

3 Pattern Matching
Pattern matching as supported by a programming language
is a tool for extracting structural and structured information
from given data (the subject). It is based on a hypothesis
that the data in question follows a specific structural pattern,
together with an action to be performed on the premise
that the hypothesis holds. A hypothesis holds if there is a
substitution σ = {xi 7→ vi } of variables to values for the
pattern P , such that σP correctly ‘matches’ the subject, i.e.
σP = π (s) for some well-defined projection π . By combining
several potential structural patterns Pj and their associated
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actions into a common selection statement, the system can
chose appropriate action based on the structure of the input
data, although a single hypothesis might be sufficient if the
compiler can statically verify it.
Conditional pattern matching allows the system to take

alternative action if a specific hypothesis does not hold,
whereas in the case of unconditional pattern matching the
correct execution of a program depends on the validity of
a hypothesis. An assignment such as (a, b) = e is an in-
stance of unconditional pattern matching that will raise an
exception if e is not sequence of two elements. The case

statements in Program 2, on the other hand, are an example
of conditional matching (although the overall match struc-
ture forms a combined hypothesis that might still fail).

Arguably the most common application of pattern match-
ing occurs in function invocations, where the list of formal
parameters specifies the structural hypothesis that any actual
arguments passed to the functionmust fulfill. In this scenario,
types and the number of values are used as structural infor-
mation and build the pattern P . The actual arguments passed
to the function form the substitution σ that maps parameter
names to argument values. A first step towards more gen-
eral pattern matching is then naturally to introduce function
overloading, whereby the function body to be executed is
chosen based on the types and count of actual arguments
provided at the call site.
In the context of textual data, regular expressions and

context-free grammars have become a widely accepted stan-
dard for formulating structural hypotheses. Instead of built-
in support in programming languages, regular expressions
and grammars are usually written separately and compiled
to efficient parsers or finite state machines, respectively, that
can then be included into a software application. Nonethe-
less, there is often some partial syntactic support for regular
expressions in various programming languages.
Of particular interest for the present work are syntactic

selection structures, offering an ordered set of hypotheses
and associated actions to be applied to a specific data subject,
as presented in Figure 1, Programs 1 to 3 and 5. Syntactically,
these structures might resemble switch tables, where an
action is chosen based on the (ordinal) value of a specific
subject rather than its structure. In contrast to such linear
switch-tables, pattern matching is typically performed based
on a decision tree, selecting the first hypothesis that holds
for the subject. In general, it is not practical or realistic to
expect the patterns to form a disjoint partition of the possible
data space, hence the first-to-succeed rule.

3.1 Objectives
In general, pattern matching pursues two objectives:

1. Validate the structure/hypothesis: ensure that the
structure of the data subject conforms to a given pat-
tern template;

Program 3 Pattern matching is used here to define a func-
tion that sums the elements of a list in Scala (on the left) and
F# (on the right), respectively (cf. Program 1). The parame-
ter list is the subject, x :: rest and _ are patterns, while
x + sum(rest) is the handler for the first pattern.

def sum(list: List[_]) =
list match {

case x :: rest =>
x + sum(rest)

case _ =>
0

}

let sum list =

match list with
| x :: rest ->

x + sum rest

| _ ->

0

2. Bind variables: extract specific information from the
data subject andmake it available by storing it in (local)
variables.

More formally, a pattern P can be thought of as a tree struc-
ture consisting of variables and constructors (cf. Section 4).
Given a data subject s and a pattern P together with a pro-
jection π , the objective of pattern matching is then to find a
substitution σ that assigns a value to each variable in P , such
that σP = π (s), or report that no such substitution σ exists.
Functional languages with algebraic data types are based
on exact equality σP = s , but the abstraction employed in
object-oriented languages requires the pattern P to be ex-
tended with an associated projection π . For instance, if a
pattern P matches instances of a class C , we expect the pat-
tern to also match instances of subclasses of C . Moreover,
an instance matched by P might have additional data in pri-
vate fields, say, that are neither expressed by, nor relevant to
the pattern P . The projection π thus expresses that object-
oriented pattern matching does not match objects exactly,
but rather well-defined representations thereof.
In statically and strongly typed languages, the structural

hypothesis may be checked or verified by the compiler dur-
ing compile time, particularly if the program code offers only
a single pattern to which the data has to conform (i.e. when
pattern matching is used in assignments or function applica-
tion, say). In this case, the compiler can then generate code
to directly build the substitution σ .
After a successful match, subsequent processing of the

data frequently depends on the pattern that matched the sub-
ject s , particularly if the sets of variables used in each pattern
differ. A pattern Pk may therefore be equipped with a specific
handler hk that is executed as hk (σk ) iff a matching substi-
tution σk exists. This permits the construction of a multi
pattern matching structure, which is an ordered sequence
⟨Pk ,hk ⟩ of patterns and handlers. Given a subject s , the sys-
tem then finds the smallest index k such that σkPk = πk (s)
and executes the handler hk (cf., e.g., [20]):

∃σk : σkPk = πk (s) ∀i < k .∀σ ′
i : σ

′
i Pi , πi (s)

hk (σk )
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Assignment:
σ = {x 7→ 2,y 7→ 3}

Function Call/Invocation:
σ = {x 7→ 5,y 7→ 7, z 7→ (11, 13)}

Selection/Branching:
s = (2, 3) ⇒ σ1 = {x 7→ 2,y 7→ 3}
s = (5, 7, 11, 13) ⇒ σ2 = {hd 7→ 5, tl 7→

(7, 11, 13)}

Figure 1. Three different forms of pattern matching. In each
case the succeeding substitution σ is given. Python already
supports limited pattern matching of sequential data in as-
signments and function calls. Our work adds a selection state-
ment for pattern matching. ‘...’ is an action to be taken if
the respective pattern successfully matches the subject.

Note that pattern matching clearly depends on the definition
and implementation of data comparison and equivalence.

3.2 Forms of Pattern Matching
We identified three different main forms of how pattern
matching generally occurs in a programming language: in
assignments, function invocations, and for branching in se-
lection structures (Figure 1).

Assignment. Assignments can support pattern matching
as a means to decompose a complex data structure and bind
values encoded in the data structure to individual local vari-
ables, rather than extracting the desired piece of data from
the structure manually. It constitutes an error if the underly-
ing hypothesis about the structure of the subject does not
hold. To some degree, pattern matching in assignments is a
common feature shared by many programming languages
and often written along the lines of val (a, b) = t.

Python supports the extraction of elements from sequen-
tial data. The subject to be matched needs to be iterable and
yield a valid number of elements to fulfill the pattern. Nested
patterns are possible and a star marks a binding target as ac-
cepting a sequence of any length rather than a single element.
The following example will assign 2 to a, the list [3, 5, 7] to
b, and the letters 'P' and 'R' to x and y, respectively.
(a, *b, (x, y)) = [2, 3, 5, 7, "PR"]

If the subject on the right hand side is not iterable or contains
too many or too few elements to fit the pattern, an exception
is raised.

Function dispatch. The formal parameters of a function
can be seen as a sequence pattern that must be matched in
order to execute the function body. In this case the function
body acts as the handler associated with the pattern as spec-
ified by the parameters. Statically typed languages usually
associate a type constraint with each parameter. If the lan-
guage supports function overloading, the function effectively
becomes a multi pattern matching structure, offering a set
{⟨Pk ,hk ⟩} of patterns and associated handlers. Due to the
declarative nature of functions in many languages, this set is
not ordered, which leads to the constraint that each possible
subject s must match exactly one pattern Pk .
As a dynamic language, Python does not have type con-

straints on function parameters, nor does it support function
overloading (although it is possible to emulate function over-
loading, usually through the definition of a class [15, 24],
cf. Program 4). Similar to assignments, it is possible to have
parameters that capture an arbitrary number of argument
values as a sequence. In combination with pattern matching,
this provides a means to emulate function overloading as
demonstrated in Program 5.

Program 4 The visitor pattern as implemented in Python’s
standard module ast. The visit-method creates a specialized
method name based on the node’s class and then looks up
that method using getattr. The same principle allows pro-
grams to emulate function overloading.

class NodeVisitor(object):

def visit(self, node):

method = 'visit_' + node.__class__.__name__

visitor = getattr(self, method,

self.generic_visit)

return visitor(node)

def generic_visit(self, node):

...

Selection structures. Branching based on pattern match-
ing allows programs to choose an action based on the struc-
ture and value of the match subject. It is similar to function
overloading, but allows the individual handlers of the pat-
terns to share a common (local) scope, and imposes an order
on the patterns involved. The patterns need therefore not
necessarily be a disjoint partition of the subject’s value space.
Examples of selection structures in Scala and F# are given
in Program 3. The addition or extension of such selection
structures is what can usually be found in the literature on
pattern matching in a narrow sense [3, 6, 9, 12, 16, 22].
At the moment (that is, as of version 3.9), Python does

not have a pattern matching selection structure. Conditional
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Program 5 Pattern matching is used here to emulate func-
tion overloading (slightly abbreviated): arg is a sequence
containing all positional arguments whereas the dictionary
kwargs contains keyword arguments. Note the guard in the
first case clause to add a dynamic (non-structural) test.

def create_rectangle(*args, **kwargs):

match (args, kwargs):

case ([x1,y1,x2,y2], {}) if x2-x1 == y2-y1:

return Square(x1, y1, x2-x1)

case ([x1,y1,x2,y2], {}):

return Rect(x1, y1, x2, y2)

case ([(x1, y1), (x2, y2)], {}):

return Rect(x1, y1, x2, y2)

case ([x, y], {'width': wd, 'height': ht}):

return Rect(x, y, x+wd, y+ht)

selection of an action is either implemented through if-elif-
else chains or possibly using dictionaries/maps. The concept
of branching based on the class/constructor of a subject is
usually implemented using the visitor pattern as indicated
in Program 4. Our selection structure is thus an effectively
novel addition to and enhancement of Python.

Other variants. The concept of a partial function as in,
e.g., Scala [18] or Grace [11] extends a function so that it can
be queried as to whether it accepts a given list of arguments.
That is, a partial function’s domain is reified and made ex-
plicit. While Scala uses non-exhaustive pattern selection to
define partial functions, Grace uses the reverse approach and
builds pattern selection out of partial functions.

Some languages support patternmatchingwithout explicit
syntactic support. Newspeak [7], e.g., implements pattern
matching through an object-oriented message passing inter-
face and the authors note that patterns must be first-class
objects in such a setting. Although first-class patterns are
possible in Python as evidenced by regular expressions and
PyMatch [14], we follow a more syntax-oriented approach
where pattern matching is provided by the compiler and run-
time environment. However, the concept of active patterns
(Section 5) could be used to emulate such an approach.

3.3 Guards
Not all types of constraints can be adequately covered by
static (context-free) patterns, where a static pattern P can be
seen as a (state-less) function that maps a subject s either to
a substitution σ or to a special value ∅ to indicate that s does
not match the pattern.

For instance, static patterns cannot express that two values
in a sequence, say, must be equivalent (Figure 2). If we con-
sider such a pattern, which takes the general form of (x , Px ),
we find that the pattern Px needs access to the variable x
and its binding. However, in a purely static setting, there is
no information flow from x to Px . In the tree structure of

Figure 2. The pattern (x ,x) naturally forms a tree without
any flow of information between the isolated variables x .

static patterns [10], information flows only vertically, but
not horizontally (cf. Section 4). By extending the static pat-
terns so that patterns accept not only the match subject but
also an additional match context as an argument passed in,
such an information flow can be established explicitly [21].
Another approach is to establish a quasi-global scope for the
entire pattern where variable bindings are not returned as a
substitution, but rather stored in the common scope [3].
Alternatively, dynamic constraints can be placed on the

substitution σ after the static pattern succeeded. Such con-
straints are known as guards (cf. Program 5). The above
pattern of two equal values could then be written as, e.g.,
‘(x ,y) if x = y’. The guard can be any valid expression such
that Γ,σ ⊢ e evaluates to either true or false (Γ is the context
in which the pattern matching is executed). The extended
pattern ‘P̃ = P ife’ succeeds iff P succeeds with the substitu-
tion σ and Γ,σ ⊢ e evaluates to true.

The evaluation operator $ in Thorn [3] implements a con-
cept similar to guards by allowing arbitrary expressions to
be evaluated in a context Γ,σ ′, where σ ′ denotes the substi-
tutions established up to this point.

The clear separation of a pattern into a static pattern and
an associated guard allows, in principle, for the static pattern
to be heavily optimized by reordering, caching or paralleliz-
ing the evaluation of subpatterns. The separation of static
patterns and dynamic guards is also reflected in parsing.
Context-free grammars cannot capture the equality of two
symbols. The compiler thus needs to check explicitlywhether
a name occurs more than once in a list of parameters.

3.4 Scope and Binding
Variables assigned in a case clause are usually only visible
in the associated handler. With strong static typing, this is
critical because the patterns of different case clauses might
bind values of differing types to variables that share a com-
mon name. In dynamically typed languages, this is less of a
concern since the variables themselves are untyped. How-
ever, different patterns are likely to bind different sets of
variables. Depending on whether pattern P1 or P2 matched
successfully, a variable x might be bound to a value, or re-
main undefined and thus inaccessible (trying to read from
an undefined variable throws an exception). Clearly, in order
for variables to be well defined, each case clause with its
handler must be a scope of its own.
The issue of undetermined variable bindings also occurs

with partly successful matches. This can be illustrated with
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the simple example: case x if x > 0. The pattern itself is
irrefutable and simply binds the subject to the variable x .
This happens necessarily before the comparison in the guard
is evaluated. If x , however, is not a positive value, the overall
pattern fails and x should remain unbound.

In Python, such scoping rules are difficult to enforce or im-
plement (cf. Section 6.1). Any actual scope would have to be
implemented internally as a function (as is the case with list
comprehensions) with some unpleasant consequences. On
the one hand, a pattern matching statement could no longer
directly influence control flow by means of, e.g., return or
break as neither of these statements would refer to the con-
text the pattern matching statement is located, but rather
to the functional scope of the successful case clause. On the
other hand, any assignment to local variables inside a case
clause would remain limited to that case clause without spe-
cial markers (e.g. nonlocal). Hence, both control and data
flow from a case clause to its surrounding context would be
severely hindered and limited. Since Python is statement-
and not expression-oriented, this would effectively reduce
the application of pattern matching statements to being the
single statement inside a function’s body.

Based on the observation that the body of a loop does not
form a proper scope, either, but that the loop variable of a
for-loop remains accessible in the surrounding context, and
in line with the semantics of assignment expressions [1], we
decided not to define special scopes for case clauses. Any
variables bound during a successful pattern match will thus
also remain accessible after the match statement—even if the
pattern eventually failed due to a guard evaluating to false.

3.5 Syntax
The overall syntax of the pattern matching statement as
shown in Program 6 includes a top-level match statement,
whose body is a non-empty sequence of case clauses. The de-
sign follows Python’s general syntax in that each compound
statement starts with a unique keyword that identifies the
statement (cf. Section 6). match and case are ‘soft’ keywords
that can be used as regular names in different contexts, so
as to maintain backward compatibility with existing code.

Program 6 The grammar of the addedmatch statement with
case clauses, slightly simplified.

⟨match_stmt⟩ ::= ‘match’ ⟨expr⟩ ‘:’ NEWLINE INDENT
⟨case_block⟩+ DEDENT

⟨case_block⟩ ::= ‘case’ ⟨pattern⟩ [ ⟨guard⟩ ] ‘:’ ⟨block⟩
⟨guard⟩ ::= ‘if’ ⟨expr⟩

3.6 Related Work
Pattern matching originally evolved as a tool to define re-
cursive equations in the context of functional programming
languages with algebraic data types [2, 5, 23]. Wadler [27]

pointed out early on the apparent conflict between pattern
matching and (data) abstraction and proposed views as a
means to combine pattern matching with data abstraction.
Following the advent of object-oriented programming

built on the notion of abstraction, research started to ad-
dressed the issue of combining an object-oriented design
with pattern matching. While various proposals to extend
Java [9, 12, 16] did not find their way into the language,
Scala [6] and F# [22], for instance, both introduced pattern
matching in a statically typed object-oriented context.
A different approach [7] introduced pattern matching to

the message-based object-oriented language Newspeak in
the tradition of Self and Smalltalk. In this context, patterns
become necessarily fist-class objects (rather than syntactic
structures) that react to messages querying whether a given
subject s matches. Structural patterns are expressed through
message keywords rather than constructors and types.
Pattern matching in Grace [11] built on this idea of first-

class objects, together with ideas taken from Scala: partial
functions support patterns to annotate parameters and can
be queried as to whether a given list of argument falls into
the domain of the partial function. The match-statement is
then a sequence of partial functions, each defining both its
domain and bindings in the form of parameters and patterns,
as well as the associated handler.
In contrast, pattern matching in Thorn [3] follows the

principle that patterns ‘should be allowed wherever variables
are bound’. Structural matching is then supported through
extensive and comprehensive syntax, which is in strong
contrast to Grace’s design that sought to implement pattern
matching with a minimum of dedicated syntax.
The work we present in this article draws primarily on

the designs from Scala, F# and Thorn: Patterns are syntactic
constructs rather than first-class objects with emphasis on
variable binding. However, instead of static types as in Scala,
say, Python needs to express constructor patterns through
dynamically resolved class objects.

4 Expressing Patterns in Python
In its basic form, a pattern is either a variable or a constructor
applied to a possibly empty sequence of subpatterns [21].
Pattern thus naturally form trees [10]. A variable matches
any subject and binds the subject to a given name (with the
exception of the wildcard variable, which forgoes the bind-
ing). Constructors express (structural) constraints which a
subjects needs to fulfill in order to match the pattern. Nullary
constructors such as literals and constants may form a con-
straint on the subject’s identity or value. In strict implemen-
tations, a constant would only match itself, e.g., the constant
1.0 would only match the floating point value 1.0, whereas
in equivalence-based matching a constant c matches any
value v with c = v according the rules of the programming
language.
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Conditional pattern matching often also allows a pattern P
to be a sequence of alternative patterns Pi , where P matches
a subject if at least one subpattern Pi matches the subject.
Formally, we could define P1 |P2 ⇒ h with patterns P1 and
P2 and the handler h to be shorthand for P1 ⇒ h, P2 ⇒ h.
However, it is often convenient to fully include alternatives
in the definition of a pattern so that patterns may be factored
out and we can write, e.g., case Node('+'| '-', lt, rt)

rather than case Node('+', lt, rt) | Node('-', lt, rt).

Summary. The following table summarizes the patterns
supported by our implementation. A detailed discussion of
the semantics and rationale for each of the patterns follows.
Variable v (any name)
Wildcard _ (underscore)
Literal 1, 2.7182818, "abc"
Named constant v .w (dotted name)
Sequence (P1, P2, . . . , Pn) or [P1, P2, . . . , Pn]
Mapping {k1 : P1,k2 : P2, . . . ,kn : Pn}
Alternatives P1 |P2 | . . . |Pn
Constructor C(P1, P2, . . . ,a1 = Pk ,a2 = Pk+1, . . .)

4.1 Variables
A variable v matches any subject and binds the variable v
to the subject. Using a variable v inside a pattern counts
as assignment, making v local to the current scope (usually
a function body). The value thus assigned to v during a
succeeding pattern becomes visible to the entire scope and
is not limited to the respective case clause.
The variable binding in a pattern must be unambiguous,

i.e. a variable cannot be bound twice by the same pattern. In
fact, if a pattern succeeds with a substitution σ , it must assign
a single value to each variable v in Var (P). For composite
patterns P̃ = P1 ⊕ P2 this means thatVar (P1) ∩Var (P2) = ∅

if both P1 and P2 must be satisfied to satisfy P̃ , andVar (P1) =
Var (P2) if either P1 or P2 can be satisfied to satisfy P̃ . Patterns
must thus be effectively (or dynamically) linear.

This rule differs from existing iterable unpacking, where a
variable can be (re-)bound arbitrarily many times, i.e. the as-
signment (v, v) = (e1, e2) is legal andwill, in accordance
with Python’s strict left-to-right evaluation order, eventually
assign e2 to v . But in the context of ‘full’ pattern matching,
(x ,x) could easily be understood as denoting a tuple of two
equal values, and the nature of nested structures makes a
strict left-to-right semantics less obvious (cf. Section 3.3).

The underscore _ is a legal name in Python without special
meaning. In the context of pattern matching, however, _ does
not bind any value but rather acts as a wildcard (there is
general agreement in the pattern matching literature that the
underscore is treated as a wildcard that matches everything
but does not bind anything). Hence, Var (_) = ∅ and thus
_ < Var (P) for any pattern P . This allows programs to reuse
_ any number of times in a pattern without violating the
requirement of unambiguous name binding.

Note that a subject can also be bound to a variablev using
the ‘walrus’ operator := [1]. The syntax v := P matches a
subject s iff the pattern P matches s and in case the match
succeeds, the variable v is bound to the subject s .

Although iterable unpacking in Python can assign values
directly to targets such as attributes and elements in a con-
tainer, this would be problematic in the context of pattern
matching due to possibility of a failed match. Assignment
to an attribute a.b or an element a[n] often causes side-
effects and might therefore lead to inconsistent program
states. With respect to variables, patterns behave thus more
like formal parameters than like iterable unpacking.

Equality. It is tempting to allow a variable v to occur
more than once to specify that values occurring at different
positions in the subject must be equal. This would support
the aforementioned pattern (x ,x) to effectively express that
the subject is expected to be a tuple of two equal elements.
There are, however two issues to be considered. The pat-

terns would need a context as discussed in Section 3.3 to
allow for information exchange between (otherwise unre-
lated) patterns. The compiler could also create a fresh vari-
able pattern vi for each occurrence of a variable v and then
add guards to ensure ∀i, j : vi = vj (which would have to be
reflected in the evaluation semantics). In either way, patterns
would no longer be static and form a context-free tree.

Without any restriction on the types of v , it is generally
not decidable whether two objects are equal or how equality
should be properly defined (cf., e.g., [8, 10]). For instance,
the subject could be a tuple (f ,д) of two functions, in which
case f = д is clearly undecidable in general. In case of a
tuple containing two floating point numbers, minute differ-
ences (which usually remain invisible) could equally lead to
unexpected behavior. Of course, Python has a clear defini-
tion of equality and any two objects are comparable with
respect to equality. A function object, for instance, is only
ever equal to strictly itself (referential equality). Moreover,
guards still allow pattens such as ‘(x ,y) if x = y’. However,
the comparison for equality is made explicit, clearly visible
and not delegated to the ‘magic’ of pattern matching.

4.2 Literals
A literal ℓ matches a subject s if ℓ = s according to the usual
equivalence semantics of Python. A literal is either an integer,
floating point or complex number, a string, or one of True,
False, or None, respectively. Because of Python’s equality
semantics the floating point number 1.0 and the integer 1
are interchangeable and match the same set of values. A
pattern needs to explicitly specify both type and value in
order to only match one of these values.
Comparison of floating point numbers is known to be

problematic due to rounding errors. Standard ML does there-
fore not support the equivalence operator = on floating point
numbers by default, and Rust excludes floating point literals
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from pattern matching. However, in Python the aforemen-
tioned equivalence semantics are already well established.

4.3 Named Constants
Particularly in larger projects, it is customary to define named
constants or enumerations/sets for recurring (parametric)
values. It would clearly be desirable to allow named con-
stants in patterns as a replacement and extension of literals.
However, Python has no concept of a constant, i.e. all vari-
ables are mutable (even where the values themselves are
immutable). While variables intended as constants are often
written in uppercase letters, there is no strict rule enforcing
this and exceptions prevail. The compiler has thus no way
of identifying which name in a pattern is intended to be a
variable, and which a constant value. In other words: the
compiler cannot distinguish between names with store and
those with load and compare semantics.

Scala [6, 18] follows the rule that any name starting with
an uppercase letter is a constant and thus creates a constraint
on the subject, whereas variables as binding targets must
start with a lowercase letter. Moreover, all qualified names
(i.e. dotted names) are also treated as constant values (in
accordance with the local scoping of variables as assignment
targets).
Thorn [3] introduces an evaluation operator $ so that $e

evaluates the expression e first and then compares the subject
to the resulting value. This allows a program to succinctly
express a pattern [x, $x] that only matches sequences of
two equal elements (cf. Section 3.3). Elixir1 uses the operator
^ (pin operator) to mark names as having load-and-compare
semantics, i.e. ^pi = x will only match if x has the same
value as pi.

Our design does not use an operator to mark names as
load-and-compare constants. However, given that attributes
cannot be pattern variables (binding targets), we adopted
the rule that a qualified (dotted) name v .w matches any
subject that is equal tov .w according to the usual comparison
semantics. This allows the convenient use of constants from
specific modules or enumerations.

4.4 Sequences
A sequence pattern P consists of a sequence of patterns
P0, P1, . . . , Pn−1. It matches a subject s if the subject supports
a sequence function fs such that for all k with 0 ≤ k < n the
pattern Pk matches fs (k), and fs (j) is undefined for j ≥ n.
In addition, a sequence might contain at most one marked
variable ∗v (including the wildcard ∗_) that matches a sub-
sequence and binds it to the variable v (Figure 1).
The starred variable allows for patterns like (x, *_, y)

that match any sequence with at least two elements, where
the first and last elements are bound the the variables x andy,

1https://elixir-lang.org/

respectively. However, patterns like (x, *_, y, *_) are not
supported, as they quickly require inefficient backtracking.

Python already supports sequence patterns as unpacking
in assignments, and the starred variable is also supported in
formal parameters to define variadic functions, where the
starred parameter will bind any actual arguments not other-
wise bound, as a tuple. Iterable unpacking in Python can be
written either as tuple or list (with no semantic distinction),
and can be nested so that, e.g., (a, [b, c], *d) = e is le-
gal. Iterable unpacking matches any object e that is iterable.
In the context of conditional pattern matching, this is prob-
lematic, as reading from an iterator changes the iterator’s
internal state.
While iterators can be used to conceptually implement

lazy lists, they provide less structure: the next element cannot
be inspected without removing it from the sequence. Nor
does an iterator reveal the number of available elements
(i.e. the length of the underlying sequence). It is therefore
impossible to support iterators as non-atomic subjects (i.e.
having sequential structure) in conditional pattern matching.
Accordingly, the patterns in our enhanced pattern matching
are not a strict superset of existing sequence unpacking.

With respect to the interface protocol, sequences in Python
are a special case of mapping structures (this is similar to
JavaScript). Any object that supports the mapping protocol
implements methods __len__() and __getitem__(key) to
return the number of elements and to return a specific ele-
ment as identified by its key, respectively. While actual maps
permit the key to be any hashable Python object, sequences
restrict keys to be integer values. Unfortunately, this distinc-
tion is not reflected in the interface. In order to correctly
match sequences, it is therefore necessary to check the type
of a potential match subject, which restricts sequence pat-
terns to only accept subjects that are known to the system
to be sequences (in particular lists and tuples).

Note that strings (either containing textual or binary data)
play a special role in that they fully implement the sequence
protocol while also being atomic values. Notably, an element
of a string is not a char, say, but rather a string of length
one, i.e. strings are recursive types with respect to item ac-
cess. In the context of pattern matching, we decided to focus
on strings as atomic values and ignore their sequence as-
pect. The pattern (a, b) will therefore not match a string of
length two. This is a somewhat arbitrary, although informed,
decision in contradiction to unpacking, which does regard
strings as sequences.
Syntactically, sequences can be either written as tuples

(a,b) (delimited by round parentheses) or as lists [a,b]

(delimited using square brackets), respectively, with no syn-
tactic difference. This reflects the already existing syntax in
iterable unpacking, where tuples and lists are also treated as
equivalent syntactic constructs.

https://elixir-lang.org/
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4.5 Mappings
Mappings identify each individual element through a unique
key, i.e. a hashable object such as a string, number or a
tuple. Our design requires that the keys ki in a mapping
pattern be either literals or named constants. The pattern
{k1 : P1,k2 : P2, . . . ,kn : Pn} succeeds in matching a subject
s if the subject is a mapping structure such as a dictionary
that has an object vi associated with each key ki in the
pattern, and if each such object vi matches the respective
pattern Pi .

Mapping patterns induce no constraint on the number of
elements contained in a mapping, or their ordering. While
they work on the same interface protocol as sequences, their
semantics is similar to that of constructors and attributes.

4.6 Alternatives
A pattern P can comprise several alternative subpatterns
Pi , 0 ≤ i < n, where P matches a subject s if there is (at least)
one subpattern Pk that matches s . The pattern P is written as
P0 |P1 | . . . |Pn−1. The patterns Pi are tried from left to right
until one succeeds in matching s . That is, P matches s if there
is a k such that Pk matches s and no pattern Pj with j < k
matches s . Patterns Pj with j > k are not tried or taken into
consideration after a matching pattern Pk has been found.
Each alternative Pj in a pattern P must cover the same

set of variables: ∀i, j : Var (Pi ) = Var (Pj ). This rule is less
restrictive than in, e.g., Scala [18], where the alternatives
Pj cannot bind any variables, whereas Thorn [3] defines
Var (Pi |Pj ) = Var (Pi ) ∩ Var (Pj ). In contrast to Scala, vari-
ables are untyped in Python and a variable that is bound by
both Pi and Pj does not need to be reduced to a common
unifying type. Binding a variable v in a subpattern Pj but
not in P as in Thorn, on the other hand, does not make sense
because the subpattern Pj cannot access v and hence the
binding to v would be lost (cf. Section 3.3).

4.7 Constructors
When pattern matching was originally introduced in Hope
[5], constructors were introduced as ‘uninterpreted’ func-
tions that ‘just construct’. In the context of algebraic data
types, we can think of constructors both as markers that
specify the exact shape and structure of the object, as well
as functions that create new objects containing exactly the
objects passed to the constructor. This gave raise to what
was later called punning [3]: the reuse of the same syntax to
both mean the actual creation of new objects, as well as the
de-construction of an object in pattern matching.
The introduction of fully object-oriented languages has

complicated this data model. Constructors no longer reflect
the internal structure of an object and are allowed to perform
any kind of computation. This is particularly evidenced by
overloaded constructors as found in, e.g., Java, Scala, and

many other object-oriented languages. Moreover, construc-
tors in such languages are often prefixed by the keyword new,
further breaking the symmetry between the construction of
new objects and a possible deconstruction in the context of
pattern matching. Principles of data abstraction and encap-
sulation also rule out direct access to the internal structure
of an object.
In order to address these issues in the context of pattern

matching, new mechanisms were introduced, such as, e.g.,
views, extractors, and active patterns [6, 9, 12, 22, 27]. Con-
structors as functions to create objects are thereby decoupled
from de-constructors in patternmatching that specify a struc-
tural constraint and extract data from an object. In general,
a de-constructor is a function that accepts a single object and
either fails or returns a structured representation of (part of)
the data encapsulated in the object.

The strict separation of de-constructors from objects and
their constructors allows programs to seamlessly work with
different representations of data. For instance, Syme at al.
[22] present an example where complex values can either be
de-constructed in rectangular or polar form: c = a+bi = reiφ

(Program 8). Nonetheless, in reality, constructors and de-
constructors are often strongly related and reflect each other.

Classes and attributes. Objects in Python have no struc-
ture other than mapping attribute names to other objects: ob-
jects thus form the vertices in a directed graphwith attributes
(fields) as edges (cf. Section 6.2). The attribute __class__

refers to an object’s class (also known as the object’s type).
Attributes can be modified, added, or deleted. The class of an
object does therefore not necessarily guarantee the presence
or absence of certain attributes, nor does it impose an order
among the attributes.

Despite the absence of guarantees, the class of an object is
usually still a strong indicator concerning the ‘external’ struc-
ture, i.e. the set of attributes. The function isinstance(),
which is used to check if an object is an (indirect) instance
of a given class (cf. Section 6.2), is one of the most often
used functions. Moreover, in the case of built-in types like
numbers or strings, the class does indeed specify the actual
structure of the object.

In the tradition of actual constructor patterns, our imple-
mentation supports patterns of the form C() that match a
subject s if s is an instance of C . As every object is an in-
stance of the base object, object() will match everything.
Note that the parentheses are mandatory to markC as a class
‘constructor’ and distinguish it from variables.

The main objective of pattern matching, however, is to
impose structural constraints on the subject and extract rele-
vant information. This implies that a selection of the match
subject’s attributes need tomatch corresponding subpatterns.
The constructor patternC() can therefore include a sequence
of attributes and patterns:C(a1 = P1,a2 = P2, . . .). A subject
matches this constructor pattern if the subject matches C()
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Program 7 The constructor pattern C() allows programs to
impose additional patterns on selected attributes, including
the possibility to bind an attribute’s value to a variable as
in left=lt, which binds the value of the attribute left to
the local variable lt. Note that the subject node might have
additional attributes, which are ignored.

match node:

case BinOp(left=Num(lt), op='+', right=Num(rt)):

return Num(lt + rt)

case BinOp(left=lt, op=('+'|'-'), right=Num(0)):

return lt

case BinOp(left=Num(0), op=('*' | '/')):

return Num(0)

case UnaryOp(op='-', operand=Num(x)):

return Num(-x)

and each of its attributes ak matches the associated pattern
Pk (Newspeak [7] follows the same approach to express the
structure of objects without referring to classes or types).
Program 7 presents an example of the constructor pattern
with additional patterns imposed on the attributes.

There is no means to express the absence of an attribute
or to give an exhaustive list so that the pattern would reject
objects with other attributes. Such a scheme would likely
prohibit that an instance of a subclass of the intended class
would match the pattern [3]. Moreover, Python objects tend
to have a large number of attributes, including methods
and ‘private’ fields, which would make such an approach
impractical.

Positional arguments. Program 7 already indicates that
explicitly naming the arguments can incur an unnecessary
overhead with objects that have a relatively clear and sim-
ple structure. For instance, we wrote Num(0) rather than the
more verbose Num(n=0). This requires that there be a map-
ping from positional arguments in the constructor pattern
to the subject’s attributes.
The canonical approach to solve the problem would ex-

tract the respective attribute names from the class’ initializer
__init__ (which corresponds to the constructor in other
languages and declares the parameters to be passed to the
constructor). Unfortunately, such an approach is not practical
in Python. Instead of strictly separated overloaded construc-
tors as in other languages, Python’s initializers achieve the
same result through a versatile and flexible signature, includ-
ing various parameters to govern how any data passed in
should be read or consumed.

Hence, rather than fall back on the initializer’s parameter
list, our design uses a special attribute __match_args__ to
provide a sequence (tuple) of field names. It specifies for each
position in the constructor pattern the respective attribute.
Python’s AST nodes already implement such a special at-
tribute as _fields. For instance, the class BinOp as used in

Program 7 specifies:
_fields = ('left', 'op', 'right')

This mapping actually allows the system to match subpat-
terns given by position to their respective attributes and we
can simply write:
BinOp(Num(lt), '+', Num(rt))

as shown in Program 2, where the attribute names are in-
ferred.

Syntax. The choice of syntax for constructor patterns
aims to mirror the syntax used when actually invoking a
constructor (also known as punning [3]). The positional argu-
ments as well as the patterns imposed on named attributes re-
semble the positional and named keyword arguments when
invoking a function. In case of the variable pattern, this
leads to, e.g., op=x, which effectively assigns the value of
the attribute op (on the left) to the local variable x (on the
right). The ‘inverse flow’ of control and information inherent
in these patterns thus becomes clearly visible and must be
minded by the programmer (the idea that pattern matching
is a program running ‘backwards’ has been noted several
times and informed the design of some pattern matching
implementations, cf., e.g., [9, 12]).
Alternative approaches with the same functionality but

different syntax are possible. In JavaScript, for instance, there
is a close relationship between dictionaries and objects, lead-
ing to a syntax for object de-construction based on dictionary
syntax, i.e.2:

case { 'type': BinOp, 'left': Num(lt),

'op': '+', 'right': Num(rt) }:

return Num(lt + rt)

In Python, however, there is a clear distinction between
objects and dictionaries and this syntax would feel alien to
describe an object (although it is used for mappings).

5 Active Patterns
A constructor is essentially a function that returns an ob-
ject of a specific type, ideally representing the data passed
in through the arguments. When used in pattern matching,
a constructor stands for the reverse operation, accepting
an instance of a specific class and returning a number of
objects representing individual aspects or fields of the in-
stance passed in. As constructors are free to perform any
computation and either incorporate or dismiss data passed
in, they are generally not reversible and it is not possible to
reconstruct the original arguments passed in. Case in point:
the str() constructor takes any Python object and returns a
string representation thereof. Since information on the type,
class, or structure of the original object is lost during this
projection, the operation is irreversible.
The constructor patterns as introduced in our design ad-

dress this issue by replacing arguments to the actual con-
structor by the notion of fields and attributes accessible on
2cf. https://github.com/tc39/proposal-pattern-matching

https://github.com/tc39/proposal-pattern-matching
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the instance. This also follows the intention of the original in-
ception of constructor patterns as a means to avoid explicit
field access [5]. An alternative is to introduce explicit de-
constructors as functions (or methods) to provide a manual
inverse of the constructor [6, 9, 12, 16, 22].

Taking this one step further, we can completely decouple
the de-constructor from the class itself, arriving at views
(Miranda) [27], active patterns (F#) [22], or extractors (Scala)
[6, 18]. This allows programs to offer different ways of ex-
tracting data from a given object, or to (re-)structure data
where appropriate. Program 8 provides an example where
complex numbers are either represented in rectangular or
polar form, depending on the operation to perform.
An active pattern or extractor is a function that accepts

a single subject as an argument and returns a sequence or
mapping of values for further pattern matching, or a special
value indicating that the provided subject does not match
the structure required for the specific extraction of data.
The solutions implemented in both F# and Scala return an
optional tuple, which can be readily adapted to Python, i.e.
a (possibly empty) tuple signals a successful match whereas
the value None signals a failed match (Program 8).
Our design supports extractors as special methods of a

class. If a class C provides a method __match__ then the

Program 8 An example adopted from Syme et al. [22]: a
complex number c can either be deconstructed into rectan-
gular or polar form using ‘active patterns’.

class Rect:

@classmethod

def apply(cls, x, y):

return complex(x, y)

@staticmethod

def __match__(subject):

if isinstance(subject, complex):

return (subject.real, subject.imag)

class Polar:

@classmethod

def apply(cls, r, phi):

return complex(r*cos(phi), r*sin(phi))

@staticmethod

def __match__(subject):

if isinstance(subject, complex):

return (abs(subject), polar(subject))

def calc(op, a, b):

match (op, a, b):

case ('+', Rect(x1, y1), Rect(x2, y2)):

return Rect.apply(x1 + x2, y1 + y2)

case ('*', Polar(r1, phi1), Polar(r2, phi2)):

return Polar.apply(r1 * r2, phi1 + phi2)

constructor pattern C(P1, P2, . . .) for a subject s is compiled
to t = C.__match__(s). If the returned value t is a tuple,
the match succeeds and t is matched against (P1, P2, . . .) as
the new subject.

Returning a tuple from extractors is slightly at odds with
the idea of specifying attributes as constructor arguments in
pattern matching. This could be addressed by creating and
returning a full ‘proxy’ object to replace the original subject.
However, it turned out that all our examples and use cases
worked with positional arguments only and did thus not
require the extra structure of a full proxy object. A combina-
tion where positional Patterns match the subjects returned
by __match__ and keyword Patterns match attributes on the
original subject, for instance, could still be implemented.
Requiring that the extractor function is a class method

__match__ rather than an independent function has the ad-
vantage that the extractor can share a name with the con-
structor and it allows an API to fully customize the de-
construction of instances, possibly hiding or adding attributes
to a specific object where necessary.

Parametrization. Constructors frequently take additional
parameters that do not provide data to be stored in the new
object, but rather specify how the data passed in should be
interpreted. For instance, a string constructor taking in a
sequence of bytes usually also takes a parameter specifying
the coding, such as ASCII or UTF-8. Such information is not
stored in the string and the reverse operation of encoding a
string as byte data requires the coding to be specified as a
parameter again.
The notion of parametrization applies equally to de-con-

structors in the context of pattern matching. In contrast to
Scala [6], we understand parametrization here not as applied
to types, but rather as a means to pass additional information
to the extractor in the form of regular Python objects, in line
with parametrized active patterns in F# [22].

Program 10 presents a example, where pattern matching
is used to process the results of textual matches by regular

Program 9 In this example, the active pattern TextDecode

is parametrized on the binary encoding of the text.

class TextDecode:

@staticmethod

def __match__(subject, enc):

try:
return (subject.decode(enc),)

except UnicodeDecodeError:

return None

match binary_data:

case TextDecode["utf-8"](text):

print(text)

case TextDecode["latin-1"](text):

print(text)
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Program 10 Using regular expressions requires actively
‘polling’ the match for information such as group name.
Parametrization allows programs to express this by passing
additional query-information on to the extracting function.

class RegExGroup:

@staticmethod

def __match__(subject, group_name):

if isinstance(subject, re.Match) and \

re.group(group_name):

return (subject.group(group_name),

subject.start(group_name),

subject.end(group_name))

TOKEN_RE = re.compile(

r"(?P<digits>\d+)|(?P<letters>[a-zA-Z]+)"

)

match TOKEN_RE.match(input):
case RegExGroup["letters"](value, start, end):

print(f"found a sequence of letters: {value}")

case RegExGroup["digits"](value, start, end):

print(f"found a sequence of digits: {value}")

expression. When a match is found by the regular expression
engine, information such as the name of the group must be
actively queried. Parametrization allows programs to pass
this ‘active’ name to the __match__ extractor as additional
parameter.

Parameters to a constructor clearly have different seman-
tics than patterns. A pattern is essentially a function that
maps a subject to an optional substitution. A parameter, on
the other hand, is a passive value with no ‘knowledge’ of the
match subject. In particular names have different semantics:
when used as a pattern a name is a pattern variable that
matches and binds any subject. As a parameter a name refers
to an existing variable and loads its current value.
It is therefore essential to syntactically separate param-

eters from patterns. While we choose square brackets, as
shown in Program 10, other variants are equally possible:
for instance, F# writes parametrized patterns as mappings,
e.g. RegExGroup "letters"-> (value, start, end).

6 Background on Python
Various design decisions are due to the nature of Python, its
syntax and semantics. This section provides a brief overview
of elements that were relevant for our design decisions.

6.1 Scope
The scope of variables is governed by module and frame
objects. Module objects typically persist through the entire
runtime of a program and act as the global namespace, i.e.
as a container for global variables (there are usually several
coexistingmodules in a program). Frame objects, on the other
hand, hold temporary runtime data for code objects, such

Figure 3. The graph shows how the object Num(n=123) (on
the upper left) is represented internally (simplified). Classes
are fully reified objects with a class of their own. The Num-
object is an instance of the classes Num, Node, and object.

as local variables, the instruction pointer, the operand stack,
as well as a pointer to the caller frame. Frame objects thus
form the call stack as a simply linked list. Each invocation
of a function creates a new frame object that gets destroyed
when the function returns.

The granularity of the scope of local variables is at the level
of functions and frames. If a name is assigned to anywhere
in the body of a function (i.e. the name appears with store
semantics), it is marked as a local variable by the compiler,
together with all formal parameters. Access to variables of a
surrounding scope is achieved by creating a closure.
The only way to restrict the scope of a variable to part

of a function’s body (such as a case clause) would be to
actively delete the variable when leaving the block. This
would, however, not restore any previous value of a local
variable in the function’s scope. The introduction of specific
scopes for case clauses would therefore incur an overhead
with no evident gain.

Name resolution. All name resolution happens during
runtime, although the compiler can optimize it in case of
local variables. Global names are actually (mutable) attributes
of the module object, so that program code external to a
module can change a module’s global variables. A compiler
can therefore not reliably decide for a name occurring in a
pattern whether it refers to a globally defined constant or
should be interpreted as a local variable.
The interpreter needs to resolve the named constants or

class names occurring in constructor patterns for each execu-
tion of the match statement. While this presents an obstacle
for optimizing compilation of pattern matching, it also natu-
rally supports type parametrization in that the class name
can be a parameter passed into the surrounding function.

6.2 Python’s Data Model
Python organizes data as a directed labeled graph: the object
graph. Each vertex is represented by an object with a unique
identity. Objects have no internal structure or size that would
be exposed to a Python program, although they emulate
such structure. Vertices are mostly expressed as attributes or
mappings on a given object. Every object refers to another
object as its class or type, written type(o) or o.__class__
in Python (Figure 3).
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A sequence (a0,a1, . . . ,aℓ−1) of length ℓ is represented
as an object s equipped with a function дs (__getitem__)
that maps integer representatives to the respective elements,
i.e. дs (n) = an for each 0 ≤ n < ℓ. However, there is no
internal structure exposed and an actual implementation of
the Python language is free to internally organize sequences
as arrays, linked lists, trees, or any other data structure.
Immutable objects do not permit manipulation of any

of their outgoing edges: once the object has been created,
all outgoing edges remain fixed. However, an immutable
object might refer to a mutable object, so that the data value
represented by an immutable object might change with time.
For instance, while tuples are immutable, the actual ‘value’
of a tuple that includes a list like (0, [1, 2]) might change
when the list [1, 2] itself changes.

Classes. Class objects distinguish themselves by addi-
tional mandatory attributes such as a tuple of base classes
(Python supports multiple inheritance). A class C is a sub-
class ofC ′ if there is a path following ‘base class’ edges from
C toC ′. An object o is an (indirect) instance ofC if type(o) is
a subclass ofC . However, a class can override the mechanism
to check whether an object o is an instance of a class C [26].

6.3 Annotations
Annotations or type hints [25] are primarily a syntactic fea-
ture to annotate, e.g., a parameter or function with a specific
Python object. An annotated function like:
def sqrt(x: float)->float:

looks as if fully typed. However, neither the Python compiler
nor the executing interpreter check or enforce any types
from annotation. Annotations are a tool for documentation
and external third-party checkers.
It seems tempting to reuse annotations in patterns as

a means to express type constraints. A constraint such as
x := int() using the constructor patterns could be rewrit-
ten as x: int instead. Besides an (obviously minor) syntactic
simplification, this would not add to the expressive power of
patterns, but come at the expense of violating the principle
that annotations do not express type constraints. Moreover,
more complex type expressions such as list[int] could not
be implemented through a simple instance or type check, but
would have to involve checking each element of the list for
its respective type. The potential complexity, often involving
de-construction of the subject, is therefore better expressed
through actual constructor patterns.

7 Discussion
7.1 Implementation
Match statements can be compiled to a series of nested if/else
statements, checking each pattern one by one using stan-
dard functions such as isinstance(), getattr() and len().
However, even relative small examples frequently include
room for optimization. In Program 2, for instance, the first

two case clauses both check whether the subject in question
is an instance of BinOp. If the check fails in the first case,
the second case does not need to be considered at all. Such
optimization effectively leads to a decision tree that selects
the correct case clause [2, 6, 22].

While optimized compilation is common in statically typed
languages, it is much more difficult to achieve similar results
in dynamic languages, which favor an approach where pat-
terns are first-class objects [3, 11], which naturally precludes
optimization. In contrast to Grace and Thorn, however, we
pursue a more compiler-oriented approach where patterns
are not reified as first-class objects within the language.
The primary difficulty concerning Python is the possi-

bility to customize the behavior of built-in functions like
isinstance() above for specific classes, which is even more
pronounced with active patterns. In principle, such func-
tions could cause side effects and thus observe how often
they were invoked during a pattern matching process. Simi-
larly, attribute or item access might yield values generated
dynamically.
In order to leave room for compilers to optimize match

statement and generate code for a decision tree rather than
force sequential testing of each case clause, we specifically
state that the interpreter is allowed to cache and reuse any
values obtained during the matching process, or even to
reorder evaluation of patterns. However, guards must be
fully evaluated without caching and in the correct order.
In other words: any compiler in Python can act under the
assumption that the patterns in a match statement are static.
A more precise specification as in [19] is problematic due to,
e.g., aliasing and parametrization.

A full discussion of compilation and evaluation of pattern
matching in Python with optimization strategies is beyond
the scope of this paper and will be tackled by future work.

7.2 Python Enhancement Proposal
The authors of this paper submitted a proposal to add struc-
tural pattern matching to Python [4], evoking a wealth of
comments and discussions in the wider Python community.
As a direct outcome of our engagement with the community,
we decided to focus the initial proposal on core elements with
the possibility to extend it to the full design as presented
here later on. In particular, active patterns were dropped
from our Python Enhancement Proposal [4].
One of the main issues turned out to be the obvious sim-

ilarity with ‘switch’ statements as found in, e.g., C. It was
often felt that the use of a simple name as a pattern should
be a named constant pattern rather than a variable pattern.
Others noted that the underscore _ is a valid name in Python
and should therefore be treated no differently than other
names, hence as a variable pattern with binding.
Despite structural pattern matching finding its way into

ever more ‘mainstream’ programming languages, there is
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still considerable reservation concerning the perceived com-
plexity and usefulness of pattern matching. This is in line
with reports from Odersky when introducing pattern match-
ing to Scala [17].

8 Conclusion
Pattern matching originated in statically typed functional
languages, but has since been adopted to object-oriented and
even dynamic languages. While object-oriented languages
tend to rely on views or active patterns to map objects to
matchable representations, dynamic languages favor an ap-
proach where patterns are first-class objects.
The approach presented in this paper introduces pattern

matching as a statically compiled feature to the dynamic lan-
guage Python. It builds on already existing language features
like iterable unpacking. Differences arise mostly due to the
conditional nature of patterns. The structure of objects can be
expressed through both classes or explicit attribute enumer-
ation. Active patterns and parametrization offer extensive
customizability akin to first-class patterns, while staying
within the framework of statically compiled patterns.

The authors of this paper presented the core features (Sec-
tion 4) to the Python community for inclusion in Python.
The corresponding Python Enhancement Proposal (PEP) [4]
has sparked widespread interest from the community: while
pattern matching is generally welcomed, various details of
concrete syntax are still being discussed.

A proof-of-concept implementation is available as part of
the PEP. However, the emphasis on static patterns in our
design should allow future work to support the compilation
of match statements to efficient decision trees.
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