A different take Let's look at typechecking again. Introduction There are two kinds of modules: checked and unchecked. The programmer indicates inside the module source code that a module is a checked module. Proposed syntax: place "decl" on a line by itself at the top of the module (after the doc string if any, but must occur before the first statement -- this includes import statements and other decl statements). A checked module is required to be internally typesafe, and typesafe with respect to other checked modules that it imports. Typesafety is a compile-time property; every attempt is made to ensure that run-time behavior of unchecked modules cannot violate typesafety of checked modules. This restricts the language somewhat. The Python implementation should guarantee that a checked module cannot raise TypeError and similar exceptions, except when explicitly requested through the use a dynamic cast operator (the spelling of which is not yet decided). Other exceptions may occur, however: IndexError, KeyError, ZeroDivisionError, OverflowError and perhaps others can occur on certain operations; MemoryError can occur almost anywhere (like SystemError and KeyboardInterrupt). The fate of NameError and AttributeError for declared, but uninitialized variables is undecided; these require flow control and thus don’t strictly fall under type checks, but a rough check for these is not particularly hard, and such a guarantee would be very useful. When a checked module imports an unchecked module, all objects in the unchecked module (and the unchecked module itself) are assumed to be of type 'any', and the checked module is typechecked accordingly. When an unchecked module imports a checked module, typechecks are inserted at access points (where the unchecked module calls or otherwise accesses the checked module) to ensure that the type constraints specified by the checked module are satisfied at runtime. These checks may be bypassed when the checked module is accessed from another checked module. Because even checked modules may be loaded dynamically, when a checked module imports another checked module, the newly imported module is tested against its expected signature. If its signature is incompatible with the signature expected by the importing module (e.g. because the imported module was modified and rechecked since the importing module was last checked) the import fails (with an ImportError exception). Example: take a checked module containing a simple GCD function: # module gcdlib.py decl def gcd(a: integer, b: integer) -> integer: while a: a, b = b%a, a return b This module passes the typesafety check. Now consider another checked module using that is it: # module test_gcdlib.py decl from gcdlib import gcd print gcd(12, 14) print gcd(20, 200) print gcd(6400, 2L**100) This module also passes the typesafety check (note that the last print statement is accepted because the type 'integer' matches both the int and long standard types). The following statement, when added to this module, will fail the typesafety test, and thus make the module fail the safety test: print gcd(3.5, 3) Assuming we have a typechecking Python interpreter, running or importing the file test_gcdlib.py thus modified will fail with a compile-type typecheck error before a single statement in it is executed. Now consider an unchecked module that is using the gcdlib.py module: # module foo.py from gcdlib import gcd print gcd(12, 14) print gcd(20, 200) print gcd(6400, 2L**100) print gcd(3.5, 3) This will print the first three answers: 2 20 256L and fail with a dynamic typecheck error on the fourth print statement. On the other hand, if we now remove the "declare typecheck" from the gcdlib.py file, the algorithm as stated will perform some result for the fourth call (generally ill-defined, because of rounding inaccuracies of floating point arithmetic), e.g.: 2 20 256L 0.5 If we now run the modified test_gcdlib.py code (with the invalid statement added) we see the same results: the module is checked, but it calls an unchecked module, which can yield any results it likes. Now consider the following module (still using the unchecked version of gcdlib.py): # module bar.py decl # this is a checked module from gcdlib import gcd decl i: integer i = gcd(2, 3) This module does not pass the typecheck, because gcdlib.py is not checked, so its gcd() function is assumed to return a value of type 'any'. Could we fix this by adding "decl gcd: def(int, int)->int" to this module? No, because there's no way at compile time to verify that the gcd function in fact matches this signature; generating a runtime error when the result doesn't have the right type isn't very helpful (given that we're asking to be typechecked). Some more examples of code that passes or fails the typecheck: def gcd(a: any, b: any) -> integer: while a: a, b = b%a, a return b This fails, because the type of b is 'any', which isn't a proper subset of the type 'integer'. def foo(a: int) -> int: return a/2.0 This fails, because the type of the return expression is float, not int. def foo(a: int) -> int: b = a return b This passes, even though the type of the local variable b is not declared -- basic type inference can deduce its type. def foo(a: int) -> int: L = [] L.append(a) return L[0] This *fails*, because the type of L is not declared, and the typechecking algorithm doesn't specify powerful enough type inference to be able to deduce that L's type is "list of int". Here's how to fix the example: def foo(a: int) -> int: decl L: [int] L = [] L.append(a) return L[0] Obviously, we have to define more precisely how much the assumed "basic type inference" can deduce. For now, we presume that it sees basic blocks and assignments to simple variables. Now let's look at a realistic example. This is find.py (taken from Lib/lib-old in the Python 1.5.2 distribution) modified to be checked and typesafe. We assume that the imported modules, both part of the standard library, are checked and hence typesafe. Bold text was added: decl import fnmatch import os _debug = 0 decl _prune: [str] _prune = ['(*)'] def find(pattern: string, dir: string = os.curdir) -> [string]: decl list: [string] list = [] decl names: [string] names = os.listdir(dir) names.sort() for name in names: if name in (os.curdir, os.pardir): continue fullname = os.path.join(dir, name) if fnmatch.fnmatch(name, pattern): list.append(fullname) if os.path.isdir(fullname) and not os.path.islink(fullname): for p in _prune: if fnmatch.fnmatch(name, p): if _debug: print "skip", `fullname` break else: if _debug: print "descend into", `fullname` list = list + find(pattern, fullname) return list Note that the types of local variables 'name' and 'fullname' are not declared; their types are deduced from the context: the type of 'name' is the item type of 'names', and the type of 'fullname' is the return type of os.path.join(). (By the way, this gives us another indication of the required power for basic type inference; it has to know the relation between the type of the sequence iterated ober by a for loop and the type of the loop control variable.) Ditto for 'p'. It should be noted that the type declaration for 'names' could be omitted without effect, since the return type of os.listdir() is known to be [string]. Could we omit the declaration for '_prune'? No; even though it is effectively a constant (by intention, it changes only when the module is edited), the typechecker isn't required to notice this. Or is it even constant? Earlier, we've discussed how the runtime can prevent changes to module globals that are apparently constants. Hmm, even if we disallow direct assignment to 'find._prune' from outside the module, that doesn't stop us from writing 'find._prune.append("spam")', so even if the typechecker can deduce that _prune is a list, it can't assume that it is a list of strings, unless it is declared so. Such are the joys of working with mutable data types. On the other hand, '_debug' doesn't need to be declared, even when we assume outside assignments are legal, because its only use is in a true/false test, which applies to any object. Hmm, this may change in the future; the new design for rich comparisons introduces types that cannot be used directly in a Boolean context, because the outcome of a comparison between two arrays will be allowed to return an array of Booleans; in order to prevent naive programmers to write "if A < B: ..." where A and B are arrays, this will raise an exception rather than always returning true. Anway, the "no outside assignments" rule would do away with this argument, and it is the most sane rule to be adopted. Syntax I like the syntax shown above; it is roughly what Greg proposes (mostly inspired by Tim's earlier proposal). There's an optional alternative which places all type annotations inside decl statements; this makes is easier to remove the decl statements for use with an unmodified Python interpreter. Thus, decl gcd: def(a: integer, b: integer) -> integer def gcd(a, b): while a: a, b = b%a, a return b is equivalent to the "in-line" version: def gcd(a: integer, b: integer) -> integer: while a: a, b = b%a, a return b I think that maybe we can allow this too, with roughly the same meaning: decl def gcd(a: integer, b: integer) -> integer I’d like to distinguish the two slightly: the form ``decl def name(...)’’ should mean that we declare a function; the form ``decl name: def(...)’’ should mean that we declare a variable that holds a function (callable). This is a useful distinction (even more so in classes). Either of the following declares the argument types without declaring the names of keyword arguments, so the function can only be called with positional arguments: decl gcd: def(integer, integer) -> integer decl def gcd(integer, integer) -> integer Note that if the decl statement doesn't give the keyword argument names, the presence of the argument names (even with default values) in the actual def statement doesn't change this. On the other hand, if the argument type declarations are included in the function definition, they keyword argument names are implied. Here's another way to declare the argument and return types. It is more verbose, and equivalent to the in-line form: def gcd(a, b): decl a: integer, b: integer decl return: integer while a: a, b = b%a, a return b I don't like Paul's 'as' keyword. See Greg's argument about this (it suggests possibly changing the value to conform to the type). I don't like Greg's '!' operator. Its semantics are defined in terms of runtime checks, but I want the semantics of typechecking to be done at compile-time, as explained above. This is not negotiable at the moment. An alternative form of syntax that doesn't require changing the interpreter at all places the decl statements inside string literals, e.g.: "decl gcd: def(integer, integer) -> integer" def gcd(a, b): while a: a, b = b%a, a return b Paul suggests something similar, but uses a tuple of two strings. I don’t see the point of that (besides, such a tuple ends up being evaluated and then thrown away at run time; a simple string is thrown away during code generation). There's one more idea that I want to discuss: once the in-line syntax is accepted, the 'decl' keyword may be redundant (in most cases anyway). We might just as well write "a: int" on a line by itself rather than "decl a: int". The Python parser won't have serious problems with this, as long as the thing on the left of the colon can be simplified to be an expression. (This is already done for assignment statements.) Minor syntactic nit: I like to use '|' to separate type alternatives, not 'or'. Classes Now let's look at the use of type declarations to annotate class definitions. A class will mostly want to declare two kinds of things: the signatures of its instance methods, and the types of its instance variables. I will briefly discuss the declaration of class methods and variables below. I propose the syntax used in the following example: class Stack: decl _store: [any] def __init__(self): self._store = [] def push(self, x: any): self._store.append(x) def pop(self) -> any: x = self._store[-1] del self._store[-1] return x Note that 'self' is still mentioned in the def statement, but its type is not declared; it is implied to be 'Stack'. It is possible to use decl statements for the methods instead of inline syntax; then the decl statement should *not* list 'self': class Stack: decl _store: [any] def __init__(self): self._store = [] decl def push(any) def push(self, x): self._store.append(x) decl def pop() -> any def pop(self): x = self._store[-1] del self._store[-1] return x Note that no decl statement or in-line syntax is used for __init__; this means that it takes no arguments (remember that __init__ never returns anything). A future extension of the type checking syntax can easily be used to declare private and protected variables, or static variables, or const variables: decl protected _stack: [any] decl public static class_stats: int decl const MAXDEPTH: int In checked modules, no dynamic games may be played with classes. (Eventually, we'll allow certain dynamic games; for now, it's best to disallow them completely so we can get on with the goal of typechecking.) The typechecker must ensure that all declared instance variables are properly initialized. For instance variables with a mutable types, this means that they must be assigned to at least once before being used in the __init__ method. For instance variables with an immutable type, if an assignment at the class level is present, this is allowed. A class in a checked module must declare all its instance variables. Instance methods are implicitly declared by the presence of 'def' statements. Here's another example: class Tree: decl readonly label: string decl private left, right, parent: Tree|None def __init__(self, lab: string, l: Tree|None = None, r: Tree|None = None): self.label = lab self.parent = None self.left = l self.right = r if l is not None: assert l.parent is None l.parent = self if r is not None: assert r.parent is None r.parent = self def unlink(self): self.parent = None def setleft(self, x: Tree): assert x.parent is None if self.left is not None: self.left.unlink() self.left = x x.parent = self def setright(self, x: Tree): assert x.parent is None if self. right is not None: self. right.unlink() self. right = x x.parent = self def prefixvisit(self, visitor: def(Tree)): visitor(self) if self.left is not None: self.left.prefixvisit(visitor) if self.right is not None: self.right.prefixvisit(visitor) Here we see a tricky issue cropping up. The links are declared to be either a Tree node or None. This means that whenever a link is dereferenced, a check must be made. The type inferencer thus must be smart enough to detect these checks and notice that in the branch, the tested variable has the more restricted type. Most languages introduce special syntax for this (e.g. Modula-3 uses the 'typecase' statement). Can we get away with things like "if x is not None:" or the more general "if isinstance(x, Tree)"? Subtyping If f is defined as "def f(x: any) -> any", and an argument is declared as "def(int)", is f an acceptable argument value? Yes. However, if the argument is declared as "def(int)->int", the answer is No! Note that no declared return type is different than a declared return type of None here; no declared return type means that the return type is not used. Otherwise I see the subtyping rules as pretty straightfoward. I do think that the subtyping rules will require that subclasses declare their overriding methods with compatible signatures as base classes. This may cause standard contravariance-related issues. Given: class B: def method(self, other: B) -> B: ... the following is valid: class D(B): def method(self, other: B) -> D: ... but class D can't declare that its method requires a D: class D(B): def method(self, other: D) -> D: ... (Read any text on contravariance if you don't understand this; this is a well-known surprising requirement that C++ and Java also have. Eiffel solves it with a runtime check; is this really better?) Idea: Eiffel allows covariance (e.g. declaring other as D in the derived class) and inserts a run-time check. We could do the same, as it is so useful. Most of the time this could probably be checked at compile time; basically all casts of a D instance to a B are suspicious, and all calls in the base class of such a method may be suspicious (unless the instance and the argument are 'self'). Parameterized types Of course, the Stack example is begging to be a parameterized type! Let's suggest a syntax. I don't like the syntax proposed before very much; what's wrong with C++ template brackets? class Stack: decl _store: [T] def __init__(self): self._store = [] def push(self, x: T): self._store.append(x) def pop(self) -> T: x = self._store[-1] del self._store[-1] return x A variant without in-line syntax is easy, for example: class Stack: decl ... or (if you prefer): decl class Stack class Stack: ... The problem with this is how to write the instantiation, *and* how to do the type checking when this is used from an unchecked module. Let's try: decl IntStack = Stack decl x: IntStack x = IntStack() x.push(1) print x.pop() x.push("spam") # ERROR decl s: string s = x.pop() # ERROR print isinstance(x, IntStack) # True print isinstance(x, Stack) # True y = Stack() # ERROR The first (slight) problem here is that the first decl statement here must introduce a new name in the *runtime* environment (which hitherto we have carefully avoided). This can be done; the syntax uses '=' to signal this to the parser. The second problem is that when a checked module creates an IntStack instance, and passes this out into an unchecked module, the instance must contain added typechecking code so that attempts to push non-ints are properly rejected (otherwise a later pop() in the checked code could yield a surprise). This means that either the statement decl InstStack = Stack must do template instantiation just like C++ (shrudder!); or the statement x = IntStack() must pass a hidden extra parameter giving the parameter type ('int') to the constructor, which store the type descriptor in a hidden instance variable, and all the methods must contain explicit type checking against the parameter type; this is slower but seems more Pythonic. In any case there will be little hope that we can fully support parameterized types in the experimental version of the syntax where decl statements are totally invisible to the parser. The statement "decl IntStack = Stack" must be replaced by something like "IntStack = Stack", at the very least. This makes the string literal experimental syntax hard to realize. Exceptions A checked module that passes the typecheck may still raise exceptions when used. Dereferencing None is a typecheck error, and so is using an unknown name, an uninitialized name (hopefully), or an unknown or uninitialized attribute; but indexing out of range, using an unknown key, dividing by zerio, and a variety of other conditions (e.g. MemoryError, IOError or KeyboardInterrupt) may cause exceptions. It would be nice if we could guarantee that no exceptions could be raised (with the exception of MemoryError or KeyboardInterrupt, which can never be prevented), but IndexError, KeyError and ZerodivisionError are hard to chek for at compile time. What do other languages do? Java and Modula-3 require such exceptions to be declared. (C++ too?) Maybe we should follow suit and do the same thing... (However, I believe that Java makes indexing errors non-declared exceptions, I believe, and ditto for null pointer dereferencing.) Open issues / ideas for the future Paul Prescod has some examples of parameterized functions, e.g. (in my syntax): def f (a: T) -> T: ... This is only useful if there is a way to instantiate such "template" functions; I could claim that if f(1) returns 1.0, it is valid because I choose "number" for T. I’m not sure that we need this much; parameterized classes seem to take care of most cases, so I suggest not to bother in version 1.0. Interfaces? Paul Prescod suggests using 'interface' as the keyword and otherwise using the class syntax, but without function bodies and initializations. Seems fine with me. To declare that we’re using an interface, we simply list it as a base class. Interfaces should be listed after all regular base classes. But I wonder if we need to bother in version 1.0. It may be useful to declare the type of a variable as conforming to several interfaces. This could be expressed with the '&' operator, e.g. ``decl a: I1 & I2''. Checked modules and classes form a good basis to revisit the idea of require/ensure (i.e., programmming by contract, as in Eiffel, and as propagated for Python by Paul Dubois). Can an unchecked module subclass a class defined by a checked module in such a way that it violates the type checks? This could be detected dynamically, either at class definition time or (at the latest) when a method is called or an instance variable is assigned to. Since int is a subtype of any, does this mean that Stack is a subtype of Stack? No, I don’t think so. Example: decl a: [int] decl b: [any] a = [1,2,3] b = a b.append("spam") The last statement is illegal because of the aliasing, but legal in the light of the type of b. The solution is either a dynamic typecheck or to say that [int] is not a subtype of [any]. Note that Java calls it a subtype and inserts the dynamic check -- apparently because it is lacking parameterized types. (See [Bruce96].) This probably has consequences for many generic or polymorphic functions; e.g. the bisect() function. So, perhaps the idea of parameterized functions does have a purpose? Jeremy suggests that at least for functions, parameterization should be explicit in the declaration (e.g. def bisect(a: [T], x: T) -> int) but implicit in the function application (e.g. decl a: [int]; a = [1,2,10]; i = bisect(a, 5)). There’s another problem here. Without extra typechecking, lists or dicts of specific types aren’t even safe as subtypes of 'any'; if I declare x: [int], then passing x into unchecked code is unsafe unless lists implement typechecking! However this is a bit different than the above example -- here we pass a checked object into unchecked territory, so the object is required to defend itself; in the previous example, the type error occurred within fully checked code (and [Bruce96] explains why). What syntax to use to declare exceptions? Is there any hope for compile time checking of out-of-bounds indexing? (The obsession of Pascal, in response to a hang-up from debugging too many Fortran programs :-) The requirement to insert dynamic type checks when an unchecked module calls a function defined in a checked module can easily be expensive; consider passing a list of 1000 ints to a function taking an argument of type [int]. Each of the ints must be checked! Jeremy suggested caching the union type of the elements in the list object, but this slows down everything since we don’t know whether the list will ever be used in a context where its type is needed (also deletions may cause the cached type to be to big, so that a full check may still occasionally be needed). It may be better to accept the overhead. (An alternative idea is to generate code in the checked function that does the type check only when items are extracted from the list, but of course this means that all checked code must typecheck all items extracted from all sequences, since sequences may be freely passed around between checked code.) Do we need a way to refer to the type of self? E.g. class C: def __add__(self, other: typeof(self)) -> typeof(self): ... This would be especially useful in interfaces... After reading part of [Bruce96]: maybe we need to separate the notion of subtyping and subclassing. Can the type of a class’ instance be determined automatically based on its class? Is there a way to detect the error pattern that Bertrand Meyer calls "polymorphic catcalls"? (A catcall is a call on self.foo(...args...) where a subclass could redefine foo() to be incompatible with the given arguments.) We should allow redefining methods with subtypes for the return value and supertypes for the arguments (but that’s not very useful). Example: overriding the __copy__() method to return the type of the current class. We could even add a mechanism to automatically vary the return type even if the method is not explicitly overridden. (But how to typecheck it?) After reading [Bruce96]: allowing MyType for argument and return value types is helpful and can be made safe, although may lead to subclasses not being subtypes. What *is* the type of self? is it the (statically known) current class? Is it something special? [Bruce96] explains that it is something special (MyType, a free variable). It is of course known to be a subtype of the defining class; but otherwise it needs to be considered a free variable. Not clear how this affects the type checking algorithm... References [Bruce96] Kim Bruce: Typing in object-oriented languages: Achieving expressiveness and safety. http://www.cs.williams.edu/~kim/README.html [Meyer] Bertrand Meyer: Beware of polymorphic catcalls. http://www.eiffel.com/doc/manuals/technology/typing/cat.html